New FDA-approved device reduces seizures in patients with medication-resistant epilepsy


A recently FDA-approved device has been shown to reduce seizures in patients with medication-resistant epilepsy by as much as 50 percent. When coupled with an innovative electrode placement planning system developed by physicians at Rush, the device facilitated the complete elimination of seizures in nearly half of the implanted Rush patients enrolled in the decade-long clinical trials.

That’s good news for a large portion of the nearly 400,000 people in the U.S. living with epilepsy whose seizures can’t be controlled with medications and who are not candidates for brain surgery.

Epilepsy is a chronic neurological condition characterized by recurrent seizures that disrupt the senses, or can involve short periods of unconsciousness or convulsions. “Many people with epilepsy have scores of unpredictable seizures every day that make it impossible for them to drive, work or even get a good night’s sleep,” said Dr. Marvin Rossi, co-principal investigator of the NeuroPace Pivotal Clinical Trial and assistant professor of neurology at the Rush Epilepsy Center.

The NeuroPace RNS System uses responsive, or ‘on-demand’ direct stimulation to detect abnormal electrical activity in the brain and deliver small amounts of electrical stimulation to suppress seizures before they begin.

The device is surgically placed underneath the scalp within the skull and connected to electrodes that are strategically placed within the brain where the seizures originate (called the seizure focus). A programmed computer chip in the skull communicates with the system to record data and to help regulate responsive stimulation.

The unique electrode placement planning modeling system developed at Rush uses a computer-intensive mapping system that facilitates surgical placement of electrodes at the precise location in the brain’s temporal lobe circuitry. When stimulated, these extensive epileptic circuits are calmed.

The modeling system predicts where in the brain the activity begins and spreads, so that the device can better influence the maximal extent of the epileptic pathway.

The device also acts as an implanted EEG for recording brain activity. This function was first shown at Rush to help determine whether the patient will further benefit from a surgical resection, in which surgeons remove a portion of the temporal lobe network.