Bedside dressing changes for open abdomen in the intensive care unit is safe and time and staff efficient

This study demonstrated that VAC change on patients with open abdomen (OA) can be done safely outside the operating room. Utilizing the ICU as a surgical suite for performing repeated changes of the OA did neither influence 30-, 60- and 90-day survival nor incidence of BSI. Additionally, the study showed that performing the dressing change in the ICU reduced costs and time spent on the surgical procedure, and it made the anesthesia team superfluous.

High age and renal replacement therapy were associated with an adverse outcome after open abdomen treatment [30]. Other studies have reported survival after OA therapy in the range of 50–72 %. Thus, the survival of patients with OA in the present study was similar to previous reports [2, 4, 5, 17, 3133]. The VAC-ICU patients stayed longer at the ICU compared to the VAC-OR group, most likely due to more severe pulmonary and renal failure, however, the length of stay in the hospital and survival were similar.

Despite the risk of a more contaminated ICU environment for the patients with DC performed in the ICU, they were not at a higher risk of BSI during and after the OA treatment. BSI affected almost one third of the study population, and in the patients not surviving 90 days almost half had BSI. This observation is in line with previous studies including patients with abdominal hypertension, ACS or OA [24, 26, 27], and eight of the 23 BSIs were due to staphylococcal infection, and thus most likely they were caused by intravenous catheters and not by contamination from the OA.

To our knowledge, this is the first study comparing time spent for VAC change on OA for two surgical locations; the OR and the ICU. The present results demonstrate a significant reduction of the time spent on preparing the OA patient for surgery when the VAC changes were performed at the ICU. The excess time used before surgery at the OR did not only relate to transportation from the ICU to the OR, but also to the time used to move the patients from the bed to the OR table, and also the time used when more personnel groups are involved. One example of the latter is the use of special assistants to lift and position the patients at the OR table at our hospital. The difference in time used for the procedure could be addressed by for instance preparing a simplified surgical equipment package similar to the one used in the ICU instead of the more advanced surgical equipment package used in the OR. The surprising finding that surgical time (knife time) differed in favor of having the dressing changed in the ICU was not due to more advanced surgery performed at the OR, as similar procedures were compared. Furthermore, the same surgeons and nurses were involved in the procedures at both locations. The time difference may partly be explained by the fact that all surgical equipment was immediately available in a prepared surgical kit in the ICU room. The time used after the procedure was finished was also significantly shorter in the ICU group, due to no need of patient transportation and less use of surgical equipment. Importantly, the anesthesia team was not involved in the treatment performed in the ICU, making an entire anesthesia team available for other activities. Altogether, the use of the ICU saved considerable personnel costs for the hospital.

Only one patient who had his dressing changed at the ICU needed to be transferred to the OR for completion of surgery. In all other cases, the dressing change was completed in the ICU. This supports a practice where OA dressing changes can be done in the ICU as long as no additional procedures are planned.

The organization of emergency surgery is important, as the availability of surgical teams, anesthesia teams and ORs are limited resources. VAC changes for OA can either delay emergency surgeries or necessitate VAC change for OA to be done after office hours. Moreover, this group of patients is usually complex, needing ventilator support and multiple infusions including vasoactive drugs. The unstable patients is exposed to a substantial risk when being transferred out of the ICU to the OR, which should be avoided if not clearly indicated [15, 16, 34]. Of course patients need to be monitored during the DC, and most patients need additional analgesics, sedatives and muscle relaxants during the procedure, but this can be administered by ICU personnel caring for the patient in the ICU.

We recognize that this study has limitations. This was a retrospective study and there was no predefined protocol to decide where to perform the DCs. Therefore, a bias may have been introduced as the surgical team performing the DC chose the location based on their preference and/or the patient’s condition, introducing multiple possible confounding factors. For instance, more patients in the ICU and ICU/OR groups received dialysis compared with the OR group. This may reflect that dressing changes in those patients were done in the ICU in order not to interrupt continuous renal placement therapy. Furthermore, the blood cultures were obtained as indicated and not routinely collected, and other infections such as local infections in the OA were not included in the data material. Although the current study was relatively large compared to other publications, the numbers are still limited for each subgroup, and therefore, due to the risk of type II statistical errors, the results should be interpreted with caution. Finally, this is a single-center study, and all findings may not be generalizable to other organizations. Hence, larger cohorts, preferably multicenter studies, with standardized assessments of complications are needed in order to conclude on outcomes related to location for dressing change for OA treatment.