Environmental chemistry and ecotoxicology: in greater demand than ever

The publication of Silent Spring in 1962 [1] made the problem of chemical pollution broadly visible and initiated a political and scientific development that has shaped environmental chemistry and ecotoxicology as we know them. Since 1962, a lot of progress has been made, many important insights have been gained, and new methods have been developed. The objective of this paper is not to provide a critical review of the development over the last decades, but to analyze the current situation, the standing of environmental chemistry and ecotoxicology in the academic system with a focus on Germany and Switzerland. The result from this analysis is that the relevance and reputation of environmental chemistry and ecotoxicology in the academic system have been decreasing for years and also today, in 2016, the prospects are not good.

It is not for the first time that this concern is raised. In 2008, A. Schäffer, M. Roß-Nickoll, H.T. Ratte, and H. Hollert, all at RWTH Aachen, initiated UFOH, an association of university institutes active in environmental research and teaching. The goal of UFOH was to analyze both the status quo of chemical-related environmental research at universities and the prospects for its future development. In 2009, the members of this group stated [2]:

“Although qualified young environmental scientists are in great demand by industry and authorities, the number of university chairs in this field is steadily and disproportionately declining. Also, the financial support for research projects has been significantly shortened, unlike in other research areas, such as biotechnology or nanotechnology. (…) We are more than concerned that, in the future, both research and education will severely suffer with the ongoing budget reductions in environmental sciences at universities.”

Since then, this trend has been exacerbated. Recent examples from Switzerland include the following: after many years of successful and important work in the field of environmental organic trace analysis, the analytical chemistry group at EMPA has been reshaped and given a different focus; at the Department of Chemistry and Applied Biosciences of ETH Zurich, the Safety Environmental Technology Group, where I have worked for 20 years, will be closed down in 2018 without a continuation; and, in 2015, the Swiss Society for Food Chemistry and Environmental Chemistry dropped the “Environmental” from its name and is now called Swiss Society for Food Chemistry [3].

Discussions with journalists and science writers seem to echo the lack of interest in chemicals, environment, and health. “Chemicals” as a topic is seen as too abstract and unwieldy; in science writing for newspapers and magazines, chemicals are frequently presented as an—important—element of other topics such as climate change or bee decline, but it is not often that chemicals as such are the main topic of a report.

Among industry, government authorities, and universities, industry appears to retain the importance of environmental chemistry and ecotoxicology. Obviously, this is because there is an immediate need for well-trained scientific and technical experts who work on the characterization and assessment of chemicals as an essential contribution to the registration of chemical products. In government authorities, the situation is mixed. In chemical-related units, the importance of environmental chemistry and ecotoxicology is fully acknowledged, but in other units, chemical-related work is often seen as a routine process in a highly regulated and clearly structured field without any open questions. In the universities, the situation is most difficult because here environmental chemistry and ecotoxicology are often seen as rather traditional or even outdated fields and priority is given to other, apparently more innovative, and more timely topics.

What are the root causes of the reservations, skepticism, and lack of support that environmental chemistry and ecotoxicology meet within universities? Three possible explanations are as follows:

  • environmental chemistry and ecotoxicology are no longer needed because chemical-related problems have been solved to a large extent (“no need”);

  • environmental chemistry and ecotoxicology are no longer vital and productive as academic subjects because they do not offer any interesting and novel research questions (“boring”); and

  • environmental chemistry and ecotoxicology may be relevant and interesting, but other environmental problems such as climate change are more pressing and need to be given priority.

Why environmental chemistry and ecotoxicology are in great demand

The examples presented below are two cases related to my own field of research, but there are many more cases that could be used to demonstrate the high demand for research and higher education in environmental chemistry and ecotoxicology.

Example 1: polychlorinated biphenyls (PCBs)

The problems caused by PCBs have not yet been solved. Surprisingly, even today, substantial PCB emissions take place [6], and, at the same time, it is not sufficiently clear what the sources of these emissions are. Government authorities assumed for more than 20 years that there were no relevant PCB emissions left after new production of PCBs had been banned in the 1980s in many countries, but this was not true. However, it took several years before our group at ETH Zurich was able to obtain funding for compiling an updated and more comprehensive PCB emission inventory for Switzerland (this project is currently ongoing).

Beyond the case of PCBs, the lesson learned from this example is that using highly persistent chemicals in numerous applications and products implies that research in environmental chemistry and ecotoxicology will be necessary for many decades. Importantly, also under REACH, many highly persistent chemicals have been registered and will be on the market for many years to come.

Example 2: Incremental substitution and chemical property data under REACH

Under REACH, the European Chemicals Agency, ECHA, hosts a database that contains the various types of data submitted with the chemicals’ registration dossiers. The list of chemicals registered up to now and the chemical property data of these chemicals as they are presented in the ECHA database [7] highlight two problems that define important research needs for environmental chemistry and ecotoxicology:

  1. 1.

    The chemicals registered under REACH include many former “existing chemicals” that are structurally (very) similar to acknowledged POPs (persistent organic pollutants) or PBT chemicals (chemicals that are persistent, bioaccumulative, toxic). Accordingly, these “emerging chemicals” share hazardous properties such as high persistence and bioaccumulation potential with the structurally related POPs and PBT chemicals. Examples are brominated aromatic substances placed on the market as replacements of polybrominated diphenyl ethers (PBDEs used as flame retardants; one replacement is decabromodiphenyl ethane, see below) and a large group of poly- and perfluorinated alkyl substances (PFASs) placed on the market as replacements of the so-called long-chain PFASs such as PFOA or PFOS that were used, among others, in impregnating agents. These are cases of incremental substitution or regrettable substitution. Environmental chemists and ecotoxicologists need to use their extensive knowledge on legacy POPs and PBT substances in order to demonstrate, as quickly as possible, the environmental and health hazards associated with these “new” chemical products. Otherwise, the problems associated with the hazardous chemicals that have been banned (here: PBDEs, long-chain PFASs) will occur again and will then be perpetuated for many years and decades [8].

  2. 2.

    An unknown, but probably high number of these former existing chemicals that are placed on the market now as replacements of hazardous substances are still very poorly characterized. This is obvious from the data contained in the ECHA database, and the database suffers from a serious problem of insufficient data quality. A striking example is the brominated flame retardant DBDPE (CAS no. 84852-53-9), which has been registered with a very high volume of 10,000–100,000 t/year. For the octanol–water partition coefficient (log K
    ow) of this substance, the database shows a value of log K
    ow = 3.55, which is too low by several log units, which is caused by a measurement error. The actual log K
    ow of DBDPE is on the order of log K
    ow = 11 [9]. This is an extreme case, but there are many more substances in the database for which erroneous data have been submitted in the registration dossiers. A systematic chemical and toxicological assessment of these data is urgently needed, but the methods and procedures for that are not yet in place. This complex evaluation of a vast amount of data requires substantial experience in physical chemistry, environmental chemistry, toxicology, and ecotoxicology.