Prognostic relevance of lactate dehydrogenase in advanced pancreatic ductal adenocarcinoma patients

In the present study, we discussed the influence of LDH levels measured right after cancer diagnosis on OS of patients with advanced PDAC. Based on multivariate Cox model and RCS, we observed that, for patients who received subsequent palliative chemotherapy, an elevated baseline LDH level was associated with nearly 2.5 folds hazards of death, whereas for patients who did not receive chemotherapy, this association was not statistically significant.

Serum LDH levels are widely accepted as indicators of tissue breakdown. In cancer patients, because of enhanced proliferation capacity, the cycle of cancer cells will be shortened, which in turn causes an increased risk of necrosis. Besides, vicinal normal tissues can be encroached upon and destructed by cancer cells [21]. All these mechanisms, along with enhanced glycolysis, may collectively contribute to increased serum LDH levels in cancer patients. In this sense, LDH levels can actually partly reflect tumor burden. It has been suggested that, high concentration of lactate can promote tumor progression and metastasis through up-regulation of tumor growth factors, such as vascular endothelial growth factor and hypoxia-inducible factor 1?, or through the direct enhancement of cellular motility [22]. More recently, Rong et al. found that LDH directly promotes the growth of pancreatic cancer cells [7]. Thus, it is reasonable to suspect that the significant inverse association between baseline LDH levels and survival we found in advanced PDAC patients who received chemotherapy can partly be attributed to tumor burden or pro-progression nature of LDH. As to the reason that why this association was not recognizable in patients who did not receive chemotherapy, the most likely explanation is that, usually an end-stage disease and exhausted physical status are major hurdles that may prevent cancer patients from chemotherapy; therefore, in this group of patients, the plummeting health would inundate a comparatively weak influence of LDH in survival, if it indeed existed.

High serum LDH levels have been found to be associated with resistance to chemotherapy in many types of cancer, such as cancers of the colorectum [23, 24], breasts [25], and lung [26, 27], just to name a few. A popular theory for this phenomenon is that stromal cells inversely transform lactate into pyruvate, which fuels progression of cancer cells and strengthens their resistance to chemotherapeutic agents [1, 28]. One previously published in vitro study clearly demonstrated that, novel LDH inhibitors exhibited synergistic cytotoxic activity with gemcitabine [29]. Therefore, it might be true that the association between elevated pretreatment LDH levels and deteriorated survival in advanced PDAC patients who went through chemotherapy was actually the association between enhanced chemoresistance and increased hazards of death.

Nevertheless, either way suggests the promising role of baseline LDH levels in individualized treatment of PDAC: for patients who are designated for chemotherapy, tackling elevated LDH levels before treatment may alleviate tumor stress and improve the efficacy of chemotherapeutic agents, thus gain survival benefit in the end. Currently, various effective LDH inhibitors are already available, and the inhibition of LDH has minimum impact on normal tissues and presents no major side effects [2931]. More importantly, the reduction in LDH activity has been proved an effective anti-proliferation measure for several other types of cancer in vivo [32, 33]. For PDAC patients who are not suitable for chemotherapy, based on current evidence, the therapeutic value of LDH inhibition cannot be concluded yet.

Although the acceptance of chemotherapy can be an ideal surrogate for the disease stage and physical performance status, there lies a possibility that cost concern prevented some eligible PDAC patients from this available but expensive treatment, and this situation could introduce bias to the association between baseline LDH levels and OS in patients who did not receive chemotherapy. Nonetheless, this bias tended to derail the association away from the null, and even so, we still concluded an insignificant association in this group of patients.

Several limitations of the present study should be considered. At first, the risk of selection bias cannot be eliminated as we only chose advanced PDAC patients whose vital information was complete. Besides, although when estimating the association between baseline LDH levels and PDAC survival, we have successfully controlled for multiple possible confounders, residual confounding effect undoubtedly existed, and its extent is hard to estimate. Finally, all patients were originated from a localized region in China, thus the generalization of our study results should be made with caution. For future studies, from the genetic perspective, the association between LDH gene expression and OS of both advanced and resectable PDAC patients is a promising topic that deserves additional investigation. It is critically important to unveil the possible underlying mechanisms of our findings and to successfully implement effective intervention measures in improving the prognosis of PDAC patients.