Homozygous deletion of TNFRSF4, TP73, PPAP2B and DPYD at 1p and PDCD5 at 19q identified by multiplex ligation-dependent probe amplification (MLPA) analysis in pediatric anaplastic glioma with questionable oligodendroglial component


Pediatric oligodendrogliomas are rare and appear to show a different molecular profile from adult tumors. Some gliomas display allelic losses at 1p/19q in pediatric patients, although less frequently than in adult patients, but this is rare in tumors with an oligodendroglial component.

The molecular basis of this genomic abnormality is unknown in pediatric gliomas, but it represents a relatively common finding in pediatric oligodendroglioma-like neoplasms with leptomeningeal dissemination.

Results:
Multiplex ligation-dependent probe amplification (MLPA) analysis using SALSA P088-B1 for the analysis of the 1p/19q allelic constitution in a pediatric anaplastic (oligodendro)-glioma showed homozygous co-deletion for markers: TNFRSF4 (located at 1p36.33), TP73 (1p36.32), PPAP2B (1pter-p22.1), DPYD (1p21.3), and PDCD5 (19q13.12), and hemizygous deletion of BAX (19q13.3-q13.4). No sequence changes for R132 and R172 of the IDH1/2 genes were identified.

Conclusions:
The molecular findings in this pediatric anaplastic glioma do not allow for a clearly definitive pathological diagnosis.

However, the findings provide data on a number of 1p/19q genomic regions that, because of homozygotic deletion, might be the location of genes that are important for the development and clinical evolution of some malignant gliomas in children.

Author: Miguel Torres-MartínCarolina Peña-GraneroFernando CarcellerManuel GutiérrezRommel R BurbanoGiovanny R PintoJavier S CastresanaBárbara MelendezJuan A Rey
Credits/Source: Molecular Cytogenetics 2014, 7:1

Published on: 2014-01-06

Tweet

News Provider: EUPB – European Press Bureau

Social Bookmarking
RETWEET This! | Digg this! | Post to del.icio.us | Post to Furl | Add to Netscape | Add to Yahoo! | Rojo

There are no comments available. Be the first to write a comment.