Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres


Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not beenreported.

Methods:
Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands).

Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA).

One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting.

Results:
Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 +/- 0.5 ml/g/min and increased to 9.6 +/- 2.5 ml/g/min during dipyridamole stress (P = 0.005).

The myocardial perfusion reserve was 2.4 +/-0.54. The mean count ratio of stress to rest microspheres was 2.4 +/-0.51 using confocal microscopy and 2.6 +/- 0.46 using fluorescence.

There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84).

Conclusion:
First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis.

Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.

Author: Roy JogiyaMarkus MakowskiAlkystsis PhinikaridouAshish S PatelChristian JansenNelly ZarinabadAmedeo ChiribiriRene BotnarEike NagelSebastian KozerkeSven Plein
Credits/Source: Journal of Cardiovascular Magnetic Resonance 2013, 15:62

Published on: 2013-07-21

Tweet

Social Bookmarking
RETWEET This! | Digg this! | Post to del.icio.us | Post to Furl | Add to Netscape | Add to Yahoo! | Rojo

There are no comments available. Be the first to write a comment.