Promoting workplace stair climbing: sometimes, not interfering is the best

The present study has demonstrated a negative effect in stair climbing from stair-leading footprints alone and in combination with stair-riser banners displaying positive feedback. The results are comparable with the findings of Coleman Gonzalez [21], who reported negative effects with male participants in both a library and an office setting. They suggested the reason to be a ceiling effect, in which case the baseline values would be too high for any increase to occur. However, a ceiling effect in the present study is somewhat unlikely, since stair descent in the intervention building averaged 15.0% higher than stair climbing throughout the monitoring period. In addition, average stair climbing in the control building was 19.0% higher than in the intervention building and this site displayed no difference between stair climbing and descent. In a similar study by Eves, Webb, Griffin Chambers [24], results showed significantly higher increase in stair climbing, when using two simultaneous interventions, rather than a single intervention. The two interventions were placed at the point of choice and inside the stairwell, similar to the intervention placements in the present study. However, while they used verbal informational posters, the present interventions are non-verbal encouragements and non-informational positive reinforcements. It seems information may be superior to the present intervention approach, as informational posters have been effective in the workplace on multiple other occasions [23, 42]. The footprints were selected as intervention because they are used as an effect to promote physical activity by various health organizations in Norway. However, to our knowledge, the only published study that has tested footprints as an intervention in the past also found negative effects [22], despite baseline stair use being lower than 16.0%. This strengthens the results of the present study and it seems the Norwegian health organizations should consider discontinuing their use of footprints. To our knowledge, stair-riser banners with a positive feedback message have not been tested in the past. The present results suggest that how a message is presented may be less important than the message itself. Kerr, Eves Carrol [34] judged stair-riser banners to be superior to point-of-choice posters to increase stair use, and they have proven effective a number of times [27, 33], but they may also be ineffective [43]. Nevertheless, the presented messages in past studies have almost always been calorie- or health related. The present stair-riser banners involved positive feedback, inspired by Schultz, Nolan, Cialdini, Goldstein, Griskevicius [37] who were able to decrease participants’ use of electricity with smiley faces. Though it has been established that positive feedback may enhance motivation [38], the opposite happened in the present study. The reason for this difference may be that the present intervention message was the same for everyone who went up the stairs. In the former experiment, participants were given personal information of their electricity use compared with their neighbors, and a smiley face if their electricity use was below average. Perhaps personalized social comparisons would have increased stair use in the present study, but that would have involved some form of self-reporting or personalized counting system, in which the participants register each time they climb a flight of stairs, and receive some form of feedback at the end of the week. In any case, further testing of the stair-riser banners in sites with lower baseline stair use would be of interest, before dismissing them completely as an intervention. Throughout the fourteen weeks of monitoring, stair climbing at the control site averaged 19.0% higher than the intervention site. When comparing the design of the two buildings, these results are in accordance with previous research. Stairs and elevator are farther apart in the control building than in the intervention building, which can increase stair use [44]. The stairs in the control building were located openly in a large entrance foyer, leaving it exposed to natural lighting, which may also increase stair use [45]. In comparison, the intervention stairwell was without windows. The present study is the first of its kind to be performed in Norway, and may present the image of Norwegians as above average physically active people, because of the high portion of stair climbers. However, previous research has found the people of the present county to be more active than the country average [46], which could help explain the unprecedented amount of baseline stair climbing. According to a review by Eves Webb [30], average baseline stair use in the workplace is only 20.9%, which is roughly ¼ of the baseline stair use in the present study. People of the present municipality is also the second highest educated in Norway [47], and it is well known that higher education is associated with physical activity levels above average [48]. Further research should be done on this topic, subjecting other populations to similar interventions. For some reason, the control building displayed a significant decrease in stair descent during the combined intervention period, but we suspect this to be a coincidence.

Questionnaire

The questionnaire was distributed because it was decided that qualitative information was necessary for an extended understanding of the objective results. Answers from the questionnaire suggest that the decrease in stair climbing can be attributed to a few respondents who were irritated that someone would come to their workplace and try to influence their behavior. Previous research has suggested that the intervention message needs to be believable, to create motivation for increased stair climbing [24]. In the present study, the stair-riser banners are positive reinforcements from an unknown source, which may have caused them to be interpreted as insincere, and may be a reason for the negative responses. The questionnaire suggests that the participants in this study were quite conscious about the fact that they use stairs for exercise reasons. This is yet another supporting argument that the present population is more physically active than average, as well as being conscious about this behavior. Another finding that makes this population out of the ordinary is how many flights of stairs they are willing to climb. Previous research has shown that people are on average willing to climb less than four floors [20]. The present questionnaire reveals that when the option “more than 8” is calculated as nine, employees from both sites combined, are willing to climb an average of six floors, before choosing the elevator. On the other hand, in the present municipality, or county for that matter, buildings higher than four floors are not quite common. Anyone could say they would climb eight flights of stairs, but we do not know if this would be the case, were they given the opportunity. More studies are needed to establish if this is a tendency in the whole country, or if it only exists in the present municipality.

Strengths and limitations

A limiting factor is the high percentage of stair users. This makes any increase difficult, and it is possible that effects would be different in a site with lower stair use. The strength of a quasi-experimental design is the ability to compare results to a control population, which several previous studies have failed to do [19, 26, 27, 49]. In addition, the present population groups are, despite the baseline differences, quite comparable: Both groups are inhabitants of the same small town and have typical sedentary desk jobs, in buildings, which share the same amount of floors. However, the results are less representative compared to results from a randomized controlled study. In further research on this topic, several buildings should be used and randomized, in order to diversify the results and investigate different work environments. Another improvement to the design would be to have one control group, one single intervention group and one combined intervention group. The reason would be to eliminate the possibility of the combined intervention results being influenced by the single intervention. Objective people counters have the advantage of being able to monitor at all time, which provides large amounts of count data, compared to monitoring by human observers. The disadvantage is inability to account for other variables, such as gender, age and weight, in order to adjust for said variables, or do sub-group analyses. Answers from the questionnaire suggest that the counters had been intrusive to the extent that people would take the elevator in spite, making it clear that some other form of hidden monitoring is preferred. However, only 35.5% (n?=?27) in the control building noticed the counters, which suggests that their intrusiveness may have been exaggerated by intervention participants. The intervention building’s low response rate to the questionnaire is another weakness, prompting assumptions of representativeness to be treated with caution. The questionnaire still provides important knowledge of how the intervention was received, and is an appropriate supplement to the objective results.