Prothelia and University of Nevada, Reno enter into agreements with Alexion for development of Laminin-111


Prothelia Incorporated (Prothelia) and University of Nevada, Reno announce that they have entered into strategic agreements with Alexion for the development of Laminin-111, a patented experimental protein replacement therapy for merosin-deficient congenital muscular dystrophy (MDC1A), a life-threatening, ultra-rare disease caused by a genetic deficiency of the Laminin-211 protein.

The three parties have entered into a binding agreement wherein Alexion has an exclusive option to acquire privately-held Prothelia and license Laminin-111 directly from the University of Nevada, Reno upon the achievement of specified research and development milestones. In addition, the University of Nevada, Reno and Alexion have entered into a sponsored research agreement to accelerate further research on the investigational therapy conditioned on the outcome of certain development research to be performed by Alexion.

“This partnership with Alexion represents a significant step toward further investigating Laminin-111 as a potential treatment for MDC1A,” said Richard Cloud, CEO at Prothelia. “We are confident that Alexion is the right partner, given their commitment to patients suffering from devastating, ultra-rare diseases like MDC1A.”

Laminins are a group of high molecular weight glycoproteins that help with the formation of the basal lamina (or basement membrane), which is a type of extracellular matrix.- MDC1A is a life-threatening, ultra-rare disease caused by a genetic deficiency of the laminin-211 protein. Laminin-211 provides the necessary structural integrity to muscles, and patients with MDC1A present with respiratory insufficiency, poor muscle tone, muscle atrophy, delayed or absent motor milestones, feeding difficulties, scoliosis and joint contractures. Respiratory infection is a common cause of morbidity and early death in MDC1A patients.- Currently, there are no approved therapies for MDC1A. Laminin-111 is a form of laminin found in embryonic skeletal muscle and has been shown in early animal studies to substitute for the loss of laminin-211.-