Researchers develop novel instruments and software for inspecting food microstructure


Applying imaging techniques to food structure is helping scientists devise ways of improving the quality of processed food

Food’s microstructure can explain many of its characteristics—be it cake’s sponginess, bread’s crispness, cracker’s crunchiness or fruits’ inner gas and water transport system and even colour. Understanding such microstructure and how it changes during food processing is essential to produce high-quality food. To do so, an EU-funded project, called InsideFood and completed in May 2013, aimed at dramatically improving food microstructure measurement.

The project focused specifically on understanding the spatial distribution of food components, their texture and how to detect foreign material in food. To do so, the researchers developed novel instruments and software for inspecting food microstructure designed to be implemented in food processing plants. Scientists relied on food model systems, such as multiphase gels and foams. They also included information on actual foods such as cereal products or fresh and dried fruits.

Sugar and gluten-free products were the focus of special attention. This is because the Polish project partner, bread and cereal products manufacturer Chaber, based in Belsk Du?y, wanted to commercialise them. “Texture largely depends on microstructure. Sugar and gluten are very important in the texture of bakery products,” says project coordinator Bart Nicolai, professor biosystems engineering at the KU Leuven in Belgium. “The challenge is to create new sugar and gluten-free foods with the same texture,” he adds.

The project scope is wider than just focusing on such applications. “The techniques we investigated are particularly suited to microporous foods that have a spongy structure, containing lots of air. [What was] new in our approach was the use of scanners and optical techniques already in use in biomedical research -for example to detect tumours- to investigate foods, “Nicolai tells CommNet, “We also applied large measuring equipment from fundamental physics research to explore common foods. On a global scale, we are setting a trend in 3D-visualisation of food microstructures.”

The scientists used information from their observation to build mathematical models that describe how microstructures change under the influence of process situations. “Our final technical target is to design and optimise a food product [by computer]. A later step can be the production of foods by 3D-printing,” Nicolai adds.