Researchers discover new mechanism that distinguishes normal blood stem cells from blood cancers


Researchers at Dartmouth’s Norris Cotton Cancer Center have published results from a study Cell Reports that discovers a new mechanism that distinguishes normal blood stem cells from blood cancers.

“These findings constitute a significant advance toward the goal of killing leukemia cells without harming the body’s normal blood stem cells which are often damaged by chemotherapy,” said Patricia Ernst, PhD, co-director of the Cancer Mechanisms Program of the Norris Cotton Cancer Center and an associate professor in Genetics at Geisel School of Medicine.

The study focused on a pathway regulated by a gene called MLL1 (for Mixed Lineage Leukemia). Ernst served as principal investigator; Bibhu Mishra, PhD, as lead author.

When the MLL1 gene is damaged, it can cause leukemia, which is a cancer of the blood, often occurring in very young patients. Researchers found that the normal version of the gene controls many other genes in a manner that maintains the production of blood cells.

“This control becomes chaotic when the gene is damaged or ‘broken’ and that causes the normal blood cells to turn into leukemia,” said Ernst.

The researchers showed that the normal gene acts with a partner gene called MOF that adds small “acetyl” chemical modification around the genes that it controls. The acetyl modification acts as a switch to turn genes on. When this function is disrupted, MLL1 cannot maintain normal blood stem cells.