Scientists build tiny "molecular drill bits" that kill bacteria by bursting through their protective cell walls


In response to drug-resistant “superbugs” that send millions of people to hospitals around the world, scientists are building tiny, “molecular drill bits” that kill bacteria by bursting through their protective cell walls. They presented some of the latest developments on these drill bits, better known to scientists as antimicrobial peptides (AMPs), at the 247th National Meeting Exposition of the American Chemical Society (ACS), the world’s largest scientific society.

The meeting, which features more than 10,000 scientific reports across disciplines from energy to medicine, continues here through Thursday.

One of the researchers in the search for new ways to beat pathogenic bacteria is Georges Belfort, Ph.D. He and his team have been searching for a new therapy against the bacteria that cause tuberculosis (TB). It’s a well-known, treatable disease, but resistant strains are cropping up. The World Health Organization estimates that about 170,000 people died from multidrug-resistant TB in 2012.

“If the bacteria build resistance to all current treatments, you’re dead in the water,” said Belfort, who is at Rensselaer Polytechnic Institute.

To avoid this dire scenario, scientists are developing creative ways to battle the disease. In ongoing research, Belfort’s group together with his wife, Marlene Belfort, and her group at the University at Albany are trying to dismantle bacteria from within. They also decided to attack it from the outside.

In their search for a way to do this, they came upon AMPs. Although these naturally occurring, short strings of amino acids are not new — all classes of organisms from humans to bacteria produce them as part of their natural defense strategy — the fight against drug-resistant pathogens has heightened attention on these protective molecules.

Researchers began studying them in earnest in the 1980s. By 2010, they had identified nearly 1,000 unique AMPs from many sources, including fly larvae, frog skin and mammalian immune system cells. The molecules come in different shapes, lengths and with other varying traits. But one thing they all have in common is that they somehow break through bacterial cell walls, the tough outer layers that provide structural support and protection. When Belfort found out about AMPs’ mode of action, he aptly dubbed them “molecular drill bits.”

Intrigued by their potential, Belfort scoured recent work on the peptides and discovered a database filtering technique developed by another group, reported in 2012. It’s a kind of design-your-own-AMP model.