Scientists from around world to discuss latest findings on diagnosis, causes and treatments of ASD


The International Society for Autism Research (INSAR), a scientific and professional organization devoted to advancing knowledge about autism spectrum disorders, convened more than 1700 researchers, delegates, autism specialists and students from 40 countries for the 13th Annual International Meeting for Autism Research (IMFAR), the world’s largest scientific gathering on autism research, from May 15 through May 17 at the Atlanta Marriott Marquis in Atlanta, GA.

Researchers and clinicians exchanged and disseminated the latest scientific findings and stimulated progress in autism research into the nature, causes and treatments for ASD during a series of scientific and educational panels, oral sessions and poster presentations. The meeting also featured demonstrations of innovative technologies and events designed for stakeholders and special interest groups`.

“As the scientific investigation of ASD continues to advance at a remarkable pace, IMFAR has become an essential and exciting forum for researchers and clinicians to share findings with each other and the broader autism community,” said Francesca Happ-, PhD, president of INSAR. “It is impossible to attend IMFAR and not be inspired and energized by what we are learning from our colleagues, as well as our stakeholders.”

“The research presented at this year’s IMFAR is incredibly promising as we are translating scientific discoveries into clinical programs that make a difference in our ability to diagnose and treat autism from infancy to adulthood,” said Laura Klinger, PhD, co-chair of the IMFAR Scientific Program Committee. “For example, we will be discussing ways to detect symptoms of autism as early as two months of age and the importance of treating anxiety and depression among adults with ASD. The global reach of this conference, with researchers from Atlanta to Addis Ababa presenting and sharing ideas to better serve individuals with ASD and their families worldwide, is particularly inspiring.”

“I can’t think of a more dynamic area of scientific endeavor than the field of autism research, which, as this meeting demonstrates, has attracted many of the most impressive scientific minds to the cause of helping people with autism, including some impressive, young researchers,” said Joseph Piven, MD, co-chair of the IMFAR Scientific Program Committee. “IMFAR provides a critical opportunity for dialogue and fosters a spirit of collaboration among the full array of scientists focused on ASD research.”

A press conference was held on May 14 focusing on notable research at IMFAR. The following studies were featured:

A first glimpse of the developmental profile of sibling resilience: 2-24 months eye tracking-based developmental trajectories of eye fixation — W. Jones and A. Klin, Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine.

Among the younger siblings of children with autism spectrum disorders (ASD), 1 in 5 also develops ASD and another 1 in 5 displays some vulnerabilities associated with ASD without presenting with the whole condition (this is often called the “Broader Autism Phenotype”, or BAP). In a recent study published in Nature, we showed that ongoing decline in eye fixation – looking at another person’s eyes – in the first 6 months of life predicted the diagnosis of ASD at the age of 24 and 36 months. Also, decline in eye fixation in the first 12 months of life predicted the child’s level of disability at the age of 24 and 36 months. In this study, we show that the trajectory of eye fixation in the first 24 months of life in unaffected siblings is virtually identical to that of typically developing babies. However, the trajectory of eye fixation for the children characterized as “BAP” begins very similarly as in children with ASD – declining from about the age of 2 months – but there is a “course correction” – i.e., increase in eye fixation – occurring at 18 months. When we mathematically transformed these “growth curves” to identify when this process began in development – i.e., when there was a change in the dynamic of the trajectory – we could pinpoint a shift in rate of change in eye fixation to the 9th month of life in these children. These results suggest a period of malleability in this phenomenon, with some children naturally undergoing course correction. If so, this early period of plasticity might be capitalized upon for early treatment and intervention with the goal of fostering such “course correction” in a larger number of children at greater genetic risk for ASD.

Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay — J. D. Buxbaum, Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai.

SHANK3 gene deletions and mutations result in Phelan McDermid Syndrome (PMS) and cause ASD with a frequency of 0.5% of ASD cases. Loss of SHANK3 is sufficient to cause the syndrome and is known to produce significant disruption in nerve cell function and plasticity in animal models. Our recent evidence from preclinical studies with mouse models of SHANK3 deficiency indicates that Insulin-Like Growth Factor-1 (IGF-1) can reverse synaptic plasticity and motor learning deficits at clinically approved doses. More recently another group has shown beneficial effects of IGF-1 in human nerve cells carrying SHANK3 mutations. IGF-1 is a commercially available therapeutic compound that enters the brain and has beneficial effects on nerve development by promoting nerve cell survival, synaptic maturation, and synaptic plasticity. We have now carried out a pilot study of IGF-1 treatment in nine patients with PMS (ages 5-15) in order to evaluate safety, tolerability, and efficacy for core deficits of ASD, including social impairment and restricted and repetitive behaviors. We approached this aim by employing a placebo-controlled, double-blind, crossover design with three months of treatment with IGF-1 and three months of placebo in random order, separated by a four week wash-out period. Results provide evidence that IGF-1 is safe, well tolerated, and associated with significant improvement in social impairment as measured by the Aberrant Behavior Checklist Social Withdrawal subscale and in repetitive behaviors as measured by the Repetitive Behavior Scale. This study establishes the feasibility of IGF-1 treatment in PMS and contributes pilot data from the first controlled treatment trial in the syndrome. It also provides proof of concept to advance knowledge about developing targeted treatments for additional causes of ASD associated with impaired synaptic development and function.

Neural responsivity to tactile and auditory sensory stimuli in youth with and without ASD — S. Green; D. Beck-Pancer ;L. M. Hernandez; J. J. Wood; J. D. Rudie; M. Dapretto and S. Y. Bookheimer, UCLA.

The extreme sensitivity to sensory stimuli often exhibited by children with autism may be caused by heightened responses in areas of the brain that process sensory stimuli and regulate emotion, according to a recent study at UCLA. Children with autism often avoid or become extremely upset in response to sensory stimuli, such as noisy environments or scratchy clothing. This condition is known as sensory over-responsivity (SOR) but until now, very little was known about why SOR occurs. In this study, first author Shulamite Green, M.A., along with senior authors Mirella Dapretto , Ph.D. and Susan Bookheimer, Ph.D., of UCLA, examined how children and adolescents with and without autism spectrum disorders responded to sensory stimuli – in this case, noisy environmental sounds and being rubbed with a scratchy fabric – while in a brain scanner. They found that the brains of youth with autism activate much more strongly in response to the slightly unpleasant touch and sound. In particular, the brain areas that were hyperactive included areas responsible for processing sound and touch (the primary auditory and somatosensory cortices), areas responsible for recognizing saliency and novel and/or unpleasant events (striatum), and areas responsible for emotion processing (amygdala, hippocampus, and orbital frontal cortex). Even more striking than the group differences was the finding that youth with autism whose parents reported higher SOR symptoms had higher activation in these brain areas. As such, youth with SOR may constitute a subgroup of individuals with autism who both initially respond too strongly to sensory stimuli but also fail to regulate their subsequent emotional response to the stimuli.

Emerging patterns of repetitive behavior linked to clinical and behavioral outcomes in high-risk infant siblings — Jason J. Wolff1, Jed T. Elison2, Heather C. Hazlett1, Juhi Pandey3, Sarah J. Paterson3, Kelly N. Botteron, Annette M. Estes, Lonnie Zwaigenbaum4, Joseph Piven1, the IBIS Network, 1University of North Carolina at Chapel Hill, 2University of Minnesota, 3Children’s Hospital of Philadelphia, 4University of Alberta.