Sedentary behavior and subclinical atherosclerosis in African Americans: cross-sectional analysis of the Jackson heart study


In this community-based sample of African Americans, longer daily TV viewing, a leisure-time sedentary behavior, was associated with greater CIMT in adjusted models that included leisure-time MVPA level and CVD risk factors. In contrast, more frequent occupational sitting, a non-leisure time sedentary behavior, was associated with lower CIMT. These results suggest the association between sedentary behaviors and subclinical atherosclerosis in African Americans varies by leisure- and non-leisure types of sedentary behavior.

A meta-analysis of observational prospective studies has shown that TV viewing is associated with an increased risk of type 2 diabetes, fatal and non-fatal cardiovascular events, and all-cause mortality [28]. Our findings confirm the association of longer TV viewing with CVD risk and provide some of the first available data linking TV viewing to CIMT, a phenotype of early atherosclerosis. This finding may provide insight into one of the biologic pathways (i.e., early vascular changes) through which sedentary behavior may lead to CVD outcomes. Previous findings from a population-based study of 1778 white adults free of CVD risk factors who were enrolled in the National Heart, Lung, and Blood Institute Family Heart Study showed no significant association between daily TV viewing time and CIMT [29]. The null findings observed in the Family Heart Study could, in part, be attributed to the lower daily TV viewing time in the study sample, as the majority of participants (two-thirds) reported watching TV ?2 h/day, a level that meta-analysis data suggest does not increase risk for some health outcomes [28]. In contrast, the level of TV viewing in the JHS sample was markedly higher as 71 % of participants watched TV ?2 h/day. Racial differences in the study samples (white vs. African American) and the exclusion of participants with established CVD risk factors (diabetes, hypertension, and hypercholesterolemia) in the Family Heart Study may also be contributing factors to the divergent findings between the two studies.

The association between daily TV viewing and CIMT in the JHS sample also provides evidence to implicate TV viewing as a CVD risk factor among African Americans. These findings are consistent with a recent study by Matthews et al. which demonstrated an association between longer TV viewing and higher risk for all-cause mortality among 63,308 African Americans in the Southern Community Cohort Study [11]. In contrast, sedentary screen time (combined TV viewing and computer use) was not associated with left ventricular structure and function among 1327 young African Americans in the CARDIA study [8]. Similarly, a lack of association between accelerometer-measured sedentary time and CVD risk factors was reported among 835 African Americans in the NHANES survey [9]. Reasons for the discrepant findings could, in part, be attributed to differences in sample characteristics, CVD-related outcomes, and the type of sedentary behavior measured. Notably, it has been demonstrated that self-reported sedentary behavior, in particular self-reported TV viewing, is more consistently associated with CVD risk than objective measurements of sedentary behavior [30]. Between-study differences, however, should be interpreted cautiously when comparing TV viewing time to objectively-measured sedentary time as TV viewing represents one type of sedentary behavior in a single domain (leisure time) while objectively-measured sedentary time comprises behavior across all domains.

In the current study, the finding that frequent occupational sitting was associated with lower CIMT adds to a growing body of literature which has previously reported either a lack of or inverse association between occupational sitting and CVD risk. A systematic review showed that of 43 identified studies, 20 reported a null finding between occupational sitting and health outcomes/conditions and five reported a decreased risk with greater occupational sitting [31]. Similar to our discrepant findings for TV viewing and occupational sitting, data from the 1958 British Birth Cohort (~97 % whites and 3 % non-whites) showed differential associations of TV viewing and occupational sitting with 5 year gain in BMI. In that landmark study, higher levels of TV viewing were associated with greater positive gains in BMI, whereas more frequent occupational sitting was associated with a negative trend in BMI change [13]. Inconsistent associations for leisure-time sedentary behaviors and occupational sitting have also been reported in several other studies. Among 7660 middle-aged adults in the 1958 British Birth Cohort, higher levels of TV viewing, but not occupational sitting, had adverse associations with CVD biomarkers including C-reactive protein and fibrinogen [12]. In a Danish population-based study of 2544 adults, leisure-time sitting was adversely associated with cardio-metabolic risk factors including LDL cholesterol, cardiorespiratory fitness, and adiposity measures, while no significant associations were observed among these measures for occupational sitting [14, 32].

There are a number of possible explanations for the discrepant findings between TV viewing and occupational sitting. First, TV viewing may displace leisure-time MVPA [33, 34]. Second, the TV viewing-CVD risk association may be reflective of the lower energy expenditure of TV viewing in comparison to occupational sitting [25]. Third, the pattern of sedentary behavior may be different (e.g., prolonged, uninterrupted sedentary behavior [e.g., sitting for hours at a time] when watching TV versus more frequent and/or longer breaks from sedentary behavior at work). Finally, TV viewing is associated with increased energy-dense food and sugar-sweetened beverage consumption [35]. As laboratory-based studies have shown deleterious postprandial glucose responses during prolonged sedentary behavior, the timing of sedentary behaviors around energy-dense meals (such as during TV viewing) may be a contributing factor to the sedentary behavior-CVD risk association.

Reasons for our finding that more frequent occupational sitting is associated with lower CIMT are unclear but could, in part, be attributed to differences in white-collar vs. blue-collar work. Blue-collar workers, whom engage in less frequent occupational sitting than white-collar workers [36], consume a less healthy diet, have poorer sleep quality, and have a complex mix of work-related psychosocial factors (low job status, effort-reward imbalance, minimal health benefits, high job strain, hazardous work environment) that may contribute to the development of subclinical atherosclerosis [37, 38].

As the majority of daily sedentary time is accumulated in the workplace [39], there has been an emergence of consumer devices (sit-to-stand desks, treadmill workstations) to promote either standing or walking in the workplace as an alternative to sitting. Although the health benefits of physical activity are well established, limited empirical evidence supports standing as a means for interrupting periods of sedentary behavior. In the present study, more frequent occupational standing was not associated with lower CIMT. Occupational standing was also not associated with a reduced risk for obesity or type two diabetes in the Nurses’ Health Study [40]. In contrast, greater daily time spent standing (pooling leisure- and non-leisure domains) has been reported to be associated with a lower risk for CVD and all-cause mortality in a national cohort of Canadian adults [41]. Future studies are needed to confirm if standing renders cardiovascular benefits and whether any potential health benefits from standing vary by leisure and non-leisure domains.

There are several strengths to our study. First, the JHS is one of the largest community-based studies ever conducted among African Americans. This landmark study provided a unique opportunity to characterize a modifiable risk factor (sedentary behavior) in African Americans that may be amenable to behavioral intervention. Second, sedentary behaviors that occur in two different domains (leisure and non-leisure) were assessed, whereas many previous studies only focused on types of sedentary behavior in a single or combined domain. Finally, CIMT, an indicator of subclinical atherosclerosis, was measured by trained technicians using a standardized protocol with strict quality control procedures.

Several limitations must also be noted when interpreting our findings. First, sedentary behavior was measured by self-report. However, self-report questionnaires can provide information about sedentary behavior in specific domains (e.g., leisure- and non-leisure) which are not available from objectively measured data. Second, questions on TV viewing and occupational sitting had different response formats: for TV viewing, participants responded using pre-defined duration categories of hours/day or week (e.g., 1–2 h/day); for occupational sitting, participants responded using pre-defined frequency categories (e.g., ‘never’, ‘seldom’). Thus, the difference in measurement precision for assessing TV viewing and occupational sitting may have affected our study findings. Third, the JHS was conducted in a single metropolitan area in the Southeastern US, possibly limiting its generalizability to other African American populations. Fourth, although we controlled for many potentially confounding variables that could account for the discrepant findings between TV viewing and occupational sitting, there may be residual confounding from unmeasured factors. Finally, because of the cross-sectional nature of our analyses, we cannot infer causality.