The effect of aircraft noise on sleep disturbance among the residents near a civilian airport: a cross-sectional study


The subjects within the exposed area showed a significantly higher mean of ISI than the subjects within the non-exposed area. The ESS mean also showed significantly higher results in the subjects within the exposed area than the subjects within the non-exposed area. The percentage of insomnia and daytime hypersomnia, which were classified according to the results of the ISI and ESS, was also significantly greater in the subjects within the exposed area than the subjects within the non-exposed area. The multiple logistic regression model reflecting the corrected variables, including sex, age, education level, residency period, lifestyle habits, operation, and hospitalization history, showed approximately 3 times higher risk of insomnia and daytime hypersomnia in the subjects within the exposed area than the subjects within the non-exposed area. In summary, the degree of noise exposure and sleep disturbance showed significant association based on the results.

The number of aircraft arrivals and departures by time from Gimpo International Airport can be found from the Airport Statistics [26] that was published by the Korea Airports Corporation. The average number of flight events daily was 51.6 in the evening from 18:00 to 22:00, and 19.5 after 22:00 during this study period between March and April of 2015. The air services during the evening and nighttime change the depth of sleep, maintain wakefulness, and disturb the process of falling into sleep [27]. This study used WECPNL as the noise metric. The WECPNL is an appropriate metric for reflecting the impact on sleep because the flight events during the evening and nighttime are weighted in this metric. As a result, it can be assumed that the air traffic has a direct impact on the sleep pattern of the residents in the area, where the survey was performed, thereby increasing the risk of sleep disturbance (Table 5).

Table 5

Daily average number of flight events in Gimpo International Airport (2015. 3. ~ 2015. 4.)

The previous studies have confirmed that continuous exposure to noise can increase the risk of sleep disturbance [2831]. There are a few studies that evaluated the relationship between aircraft noise and sleep disturbance, including a community-based cross-sectional study, which is similar to this study, that was conducted by Kim et al. [9]. The sleep quality of the residents adjacent to the airport was evaluated by using the Pittsburgh Sleep Quality Index (PSQI) [32]. The results showed that the quality of sleep was poor in the residents, who were exposed to the aircraft noise, and there was a greater risk of sleep disturbance.

Sleep is also influenced by the sex and age of a person [33]. In this study, female and older subjects showed significant results in terms of their association with sleep disturbance. The prevalence of sleep disturbance showed a difference according to the education level and residency period of the subjects in the univariate analysis. However, the multiple logistic regression model results did not show a statistical significance after the adjustment of such variables.

The subjects, who had been hospitalized or had undergone operations in the previous year, also showed a higher prevalence of sleep disturbance. The chronic comorbidities and health status that may affect the sleep quality [34] and the reverse effect of sleep disturbance can also be considered. Patients with sleep disturbance are more likely to develop affective disorders [35, 36]. Likewise, the prevalence of the hospitalizations or operations was greater in the noise exposure group than that in the control group. It could be considered as a health effect of the aircraft noise [610].

For the lifestyle habits, there was no variable that showed a significant association with the occurrence of daytime hypersomnia. In the univariate analysis, the prevalence of insomnia showed some difference based on the lifestyle habits, but only regular exercise performance showed a significance in the multivariate analysis. The subjects, who exercised regularly, showed a higher prevalence of insomnia, which was different from the general understanding that regular exercise improves the quality of sleep [37, 38]. However, exercise near bedtime changes the circardian phase [39], increases the core body temperature [40], and increases the physiological arousal [41], which would disturb sleep. However, this study did not collect the information on the exercise time, so the relationship could not be confirmed. On the contrary, this is a cross-sectional study and a reverse causation can be suspected. It is possible that people, who experience sleep disturbance, tend to exercise more than others.

There are some limitations to this study. First, the subjects of the exposure group were selected based on the official announcement of the Seoul Regional Aviation Administration 5 years earlier without using a direct noise measurement. As it used the past noise level, the current exposure to the noise could not be accurately reflected, and the possibility of a misclassification could not be ruled out. Second, a subjective method was used to evaluate sleep disturbance rather than objective methods, such as EEG and polysomnography. There was a study that evaluated sleep disturbance by using EEG and polysomnography [42], but these objective methods are practically difficult to use in a large-scale epidemiological study. Third, other factors that might have an impact on sleep, such as drinking coffee and watching television at night, were not taken into consideration.

Despite such limitations, this was a large-scale epidemiological study that enrolled more than 3000 subjects. It was the largest scale study among those on aircraft noise conducted in South Korea. This study was significant, as it was conducted on the residents, who live in city areas near the airport, whereas the previous studies on aircraft noise were conducted in the suburbs or towns located outside the city.

Sleep disturbance caused by aircraft noise is an important public health issue. In particular, the airport, on which this study was conducted, was located near the city with residents living in the area, and this might lead to more serious problems. The air services during the evening or nighttime also have a direct impact on the sleep pattern of the residents. For this reason, appropriate measures need to be considered.