The role of hazard vulnerability assessments in disaster preparedness and prevention in China


HVA content

Different regions and countries have different priorities for HVA content. The HVA team should first use brainstorming to determine the potential disasters that the community and/or hospitals may encounter. Disasters can be generally classified as either natural disasters or manmade disasters. Climate change and increased urbanization promote the population vulnerability to natural hazards. China is prone to a high frequency of natural disasters because of its complex geography and climate. Data show that the main disaster types include floods, earthquakes, drought, epidemics, extreme temperatures, storms, and mass movement wet (subsidence, rock falls, avalanches and landslides) [17]. These natural disasters harm humans, lead to significant economic losses, change the environment, and restrict social development. A flood is a common natural disaster that greatly affects China, dating back to 30 BC. The Yangtze River Delta region is a typical floodplain. The area’s geographic features, including numerous rivers, lakes, channels, and a low and flat terrain, make it very susceptible to multiple disasters, such as floods, typhoons, and storm surges. With a high population density and growing economy, the Yangtze River Delta region is at high risk for and very susceptible to natural hazards [18]. Earthquakes are another common disaster in China and lead to significant numbers of causalities. Three of the world’s top 10 most fatal earthquakes occurred in China, including the 1556 Shaanxi earthquake, the 1976 Tangshan earthquake, and the 1920 Haiyuan earthquake. The most recent significant earthquakes were the Wenchuan earthquake of 8 Mw on May 12, 2008, and the 6.6 Mw Lushan earthquake on April 20, 2013, which resulted in significant causalities and property losses [19]. On the other hand, increasing population density and a lack of effective prevention and response plans also increase the population vulnerability to manmade disasters, which include terrorist attacks and technological hazards. A stampede in Shanghai during the 2015 New Year’s Eve celebration left 36 dead and 47 injured, exposing issues in carrying out a proper disaster response plan [20]. A detailed database of disasters is the basis for informed policy decisions. A reliable source of information on past disasters is crucial for HVA analysis. Information can be gathered from various sources, including local residents and archives. However, objective data, such as those from academic institutions, disaster and emergency management centers, and meteorology and seismology agencies, should be used as the main references during the assessment of vulnerability. In addition, we should take into consideration secondary hazards to reduce the underestimation of population vulnerability. For example, a significant earthquake could result in various hazardous events, such as fuel shortages, transportation failures, steam failures and floods.

Disaster identification

Hazard identification is an important step in an HVA. It includes determining the likelihood of a disaster occurring, its intensity and magnitude, and the possible affected areas of a community [4]. Hospitals should conduct an annual review of their HVA. Extensive reviews have been conducted regarding potential threats and are summarized in Table 1.

Table 1

Categories and examples of potential hazards

The HVA team should also evaluate the possible impacts of a disaster on the normal functions of the hospital or community. Effects caused by disasters include: (1) Human impact, such as the safety of patients, staff, and visiting family members and friends. For example, according to the Chinese national earthquake relief headquarters, after the 2008 Wenchuan earthquake, 69,227 people were killed, 374,643 were injured, 17,923 were missing, and millions were affected [15]. (2) Property impact, including but not limited to building or structure damage, loss of or damage to equipment and/or supplies, and repair costs. The 2008 Wenchuan earthquake revealed that building standards for earthquake resistance were generally poor, especially for schools and hospitals. Emergency shelters were rare in most cities [15]. (3) Business impact, such as a partial or complete business interruption, patients unable to reach the facility, employees unable or unwilling to report for work, and issues related to medical records.

Disaster probability and consequences

In addition to type of disaster (e.g., natural, manmade, or technological), the impact of a particular hazardous event is also determined by likelihood (probability of occurrence or frequency), severity (magnitude and intensity), and population resilience (defined as “a measure to determine the impact of available public health, emergency management, and governmental and societal resources and capabilities that could potentially mitigate negative population health consequences”) [4]. Although no indicator can accurately predict the occurrence of disasters, the combination of different risk factors can help to predict the likelihood of disaster occurrence. The likelihood of disaster occurrence can be described as low, medium, or high. Other related factors that can be used to describe the probability include: (1) the frequency of the occurrence of disaster-associated factors. For example, frequent and heavy rainfall indicates a high probability of floods; (2) the location of the hazardous event. The closer the distance between the hazard and the community, the more severe the consequence may be to the nearby community; and (3) seasonal or cyclical variations. The consequences of a disaster on the community mainly include three impacts: human, property, and business [13].