Transurethral 160-W straight beam green laser vaporesection of the prostate: initial experience after 180 procedures


Currently, TURP is still the gold standard in the surgical treatment of BOO caused by BPH. The rapid development of laser technology makes PVP be widely recognized (Bach et al. 2012). Three clinical randomized trials have demonstrated that PVP at least have equally efficacy and safety compared with TURP, especially for the elderly and high-risk patients with oral anticoagulation and bleeding tendency (Chen et al. 2012; James et al. 2015; Teng et al. 2013).

Until now, there has been little experience reported on the performance of the straight beam green laser vaporesection in the treatment of BPH (Gong et al. 2014). The GOLIATH study carried out by James A. Thomas et al. show that green light laser vaporization with 180 W XPS system is safe and effective as TURP for BPO, according to 2-year follow-up data (James et al. 2015). Even so, the confirmed shortcomings of PVP include slower vaporization speed, uncontrollable bleeding during operation, poor visibility and recurrence of residual gland postoperative (Spaliviero et al. 2008). In terms of the surgical instruments and operating procedures, some conventional methods, such as vaporizing the prostate lobe by lobe and vaporization-resection of prostate tissue, have been widely reported (Netsch and Bach 2015). Misrai et al. have raised up the “En Bloc” enucleation of the prostate using a surgical 532-nm laser (GreenLEP) technique, which need a morcellator for morcellation of prostate tissue (Misrai et al. 2015). However, the ideal surgical approach has not yet appeared.

On the basis of operational experience of PVP over 10 years, we not only improve the assembly of operation instrument scientifically by making full use of the existing equipment available, but also put forward our own surgical technology of retrograde stripping-vaporization using straight beam green laser. We analyzed the statistical data and achieved good results.

Following aspects are the main innovations and research findings: (1) Switching to plasma kinetic resectoscope in place of traditional sheath in the PRSVP to improve the effect of flushing water. It will increase water flow of bladder irrigation during operation. In addition, we also developed the method of putting the LBO laser fiber into the resectoscope sheath. (2) Improvement of vaporization method with straight beam LBO laser fiber. During the operation, we perform stripping-vaporizing the prostatic tissue by the way of stripping simultaneously vaporization. We use contact type vaporization during the operation. When there is a bleeder, using the laser fiber tip to vaporize the bleeder directly and lowing down the power to about 30–60 W can stop the bleeding. (3) Traditional PVP operation cannot acquire pathological specimen (Malek et al. 2005). The improved PRSVP can obtain pathological specimens from the surgical capsule of prostate to avoid the omission of prostate cancer.

For large prostates, especially in those larger than 100 g, there is no need to strip the tissue directly reaching the surgical capsule at the beginning of the operation (Kim et al. 2015). Firstly, we usually vaporize the tissue around the verumontanum to achieve a space for the next further stripping to capsule.

In patients with small prostates, we can directly strip the prostate to the surgical capsule. Actually we have been vaporizing a wall of prostate tissue and will create a more spacious urethra during the operation. So there is obvious superiority by stripping-vaporizing than single enucleation which will narrow operation space (Raison and Challacombe 2015).

In this study, the perioperative data show that there is small fiber power loss, high vaporization efficiency and short operative time in the PRSVP. In comparing our operative time to the previous study by Gong YG and James A, we have experienced slightly longer operating time, perhaps because the prostate volume was larger in our study (Gong et al. 2014; James et al. 2015). The follow-up results strongly suggest that the effect of PRSVP is lasting. IPSS score decrease continuously; Qmax and PVR improve continuously as well. The prostate volume has no recurrence of hyperplasia even reoperation required over 1 year of follow-up. The data show that the direct clinical effect of PRSVP can be stable and sustainable, even further more improvement during the follow-up.

In terms of surgical complications, intraoperative blood loss is less in patients without blood transfusions, especially for the patients with oral anticoagulant therapy. The surgery has so exact security in blood loss that the catheter time and postoperative time of hospital stay are all significantly reduced. The patients with oral anticoagulation do not need to discontinue the anticoagulant drug, and there is no significant risk of secondary hemorrhage.

The capsule perforation usually require surgical, endoscopic, or radiologic intervention, so it is Clavien 3b. There were four patients (2.2 %) who had capsule perforation in our study, which is less common with those described following TURP (compare with 4 % incidence with TURP) and consistent with PVP using the 180- or 120-W LBO lasers (Mandal et al. 2013; Rieken et al. 2010; Campbell et al. 2013). We performed a conservative treatment by the pulling of the catheter without re-operated.

Bladder cramps is one of common complications after surgery. There are many factors that can cause bladder cramps, rinses inappropriate temperature is one of the main reasons. In this study, all the patients did not use bladder irrigation after the operation, so the bladder spasm is rare.

The procedure does not increase the risk of urethral stricture and bladder neck contracture. There are four cases of bladder neck contracture. All of the four patients have a small volume of prostate. This complication associated with minor volume of prostate and incision of the bladder neck tissue. In this study, the incidence of bladder neck sclerosis and urethral stricture are comparable to those previously reported in studies on PVP and of low incidence (Rieken et al. 2010). Urethral stricture may due to a plasma resectoscope sheath (26F) is used, which has larger diameter than traditional PVP sheath. The bladder neck sclerosis and urethral stricture were all mild and short like thin membrane and dialatation management was enough without a bladder neck incision or urethrotomy.

The rate of minor complications is similar with previous literature reports (Gong et al. 2014; Chen et al. 2012). The surgical approach does not increase the occurrence of injury to the external urethral sphincter which could result in real incontinence. There is no case of damage to the bilateral ureteral orifices.